- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Green, Andrew_J (2)
-
Muller, David_A (2)
-
Azizie, Kathy (1)
-
Badescu, Stefan_C (1)
-
Birkhölzer, Yorick_A (1)
-
Brown, Jeff_L (1)
-
Chabak, Kelson (1)
-
Chabak, Kelson_D (1)
-
Chang, Celesta_S (1)
-
Coye, Selena (1)
-
Dryden, Daniel_M (1)
-
Gorsak, Cameron_A (1)
-
Hensling, Felix_V_E (1)
-
Jena, Debdeep (1)
-
Jeon, Hyung_Min (1)
-
Kim, Yunjo (1)
-
Leedy, Kevin_D (1)
-
Liu, Zi-Kui (1)
-
Look, David_C (1)
-
McCandless, Jonathan_P (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Conductive homoepitaxial Si-doped β-Ga2O3 films were fabricated by pulsed laser deposition with an as-deposited 2323 S cm−1 conductivity (resistivity = 4.3 × 10−4 Ω-cm, carrier concentration = 2.24 × 1020 cm−3, mobility = 64.5 cm2 V−1 s−1, and electrical activation efficiency = 77%). High quality homoepitaxial films deposited on commercial (010) Fe-compensated β-Ga2O substrates were determined by high-resolution transmission electron microscopy and x-ray diffraction. The β-Ga2O3 films have ∼70% transparency from 3.7 eV (335 nm) to 0.56 eV (2214 nm). The combination of high conductivity and transparency offers promise for numerous ultrawide bandgap electronics and optoelectronic applications.more » « less
-
Azizie, Kathy; Hensling, Felix_V_E; Gorsak, Cameron_A; Kim, Yunjo; Pieczulewski, Naomi_A; Dryden, Daniel_M; Senevirathna, M_K_Indika; Coye, Selena; Shang, Shun-Li; Steele, Jacob; et al (, APL Materials)We report the use of suboxide molecular-beam epitaxy (S-MBE) to grow β-Ga2O3 at a growth rate of ∼1 µm/h with control of the silicon doping concentration from 5 × 1016 to 1019 cm−3. In S-MBE, pre-oxidized gallium in the form of a molecular beam that is 99.98% Ga2O, i.e., gallium suboxide, is supplied. Directly supplying Ga2O to the growth surface bypasses the rate-limiting first step of the two-step reaction mechanism involved in the growth of β-Ga2O3 by conventional MBE. As a result, a growth rate of ∼1 µm/h is readily achieved at a relatively low growth temperature (Tsub ≈ 525 °C), resulting in films with high structural perfection and smooth surfaces (rms roughness of <2 nm on ∼1 µm thick films). Silicon-containing oxide sources (SiO and SiO2) producing an SiO suboxide molecular beam are used to dope the β-Ga2O3 layers. Temperature-dependent Hall effect measurements on a 1 µm thick film with a mobile carrier concentration of 2.7 × 1017 cm−3 reveal a room-temperature mobility of 124 cm2 V−1 s−1 that increases to 627 cm2 V−1 s−1 at 76 K; the silicon dopants are found to exhibit an activation energy of 27 meV. We also demonstrate working metal–semiconductor field-effect transistors made from these silicon-doped β-Ga2O3 films grown by S-MBE at growth rates of ∼1 µm/h.more » « less
An official website of the United States government
